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Abstract A new predicting approach of long-term storage capacity for autonomous
PV installations has been developed using the rescaled range analysis (R/S). The
method consists mainly in establishing a mathematical law between the (R/S)τ ratio
and the time period τ . The method has been tested over one year for two autonomous
PV systems located in the huge desert of Algeria. Data used are converted solar
energy which are not stationary. The experimental results show that even if the
condition of stationarity is not satisfied, the rescaled range is well described by
a power function of the time, this is possible by introducing a new exponent E.
Using the power law the PV storage capacity is predicted for periods ranging from
1 to 5 years. The obtained results show that for an energy demand equalling the
mean of converted energy, a storage of several months is needed to obtain the
autonomy of the PV systems, consequently it will be too expensive to set-up such
PV installations. Thus, an optimization method has been proposed to reduce the size
of the storage. Application of this method for the two studied systems has led to
significant reduction of the PV storage size.

Keywords Solar irradiation · Photovoltaic storage · Fractal · Hurst ·
Rescaled range analysis · Prediction

1 Introduction

Several countries have started to exploit photovoltaic energy as part of their future
energy supply. To ensure the growth of the PV sector, it is necessary to deliver secure
and reliable power without discontinuous while managing uncertainties related to

S. Harrouni (B)
Instrumentation Laboratory, Faculty of Electronics and Computer,
University of Science and Technology H. Boumediene (USTHB),
P.O. Box 32, El-Alia, 16111, Algiers, Algeria
e-mail: sharrouni@yahoo.fr



www.manaraa.com

312 J Math Model Algor (2013) 12:311–328

fluctuations of the energy source. In fact, a fundamental characteristic of a photo-
voltaic system is that power is produced only while sunlight is available. Therefore,
stand-alone photovoltaic generators (systems in which the photovoltaic is the sole
generation source) require an electricity storage system to deliver a quasi-continuous
energy supply regardless of insolation sequences.

Storage, in a photovoltaic system, accounts for a far from negligible contribution
to overall operating costs, owing to successive replacements, over the system’s
lifetime. Indeed, overall storage cost is not subject to any downward trend, matching
that achieved for the other components of photovoltaic systems.

Because of large impact of the storage system in a stand-alone photovoltaic instal-
lation, the storage sizing is one of the important questions investigated to improve
the efficiency of the operation of photovoltaic systems and reduce their costs.

Several approaches have been established in order to find the best way for
evaluating and predicting suitable size of the storage capacity for autonomous PV
systems [1–7]. In this paper a new approach for predicting the long-term photovoltaic
storage is presented. The approach is based on the statistical method: the rescaled
range analysis (R/S analysis).

The paper is organized as follows: Section 2 provides a description of the rescaled
range analysis. In Section 3, we present the Hurst exponent and the fractal dimension,
the relation between the two parameters is also discussed, in this section the
“Rectangular Covering Method” we already developed for estimating the fractal
dimension of signals is also described. In Section 4, we apply the rescaled range
analysis to predict the photovoltaic storage. Thus, the data bank used and the
obtained results are presented in this section. Section 5 deals with the optimisation
of the proposed approach. Finally in Section 6 we give a conclusion summarising our
findings and results.

2 Rescaled Range Analysis

R/S analysis was established by the hydrologist Hurst in 1951 and the same was
further developed by Mandelbrot and Van Ness (1968). Hurst devoted his researches
to the study of the hydrology of the Nile River, in particular he was interested
to the yearly changes in water level in order to adapt the dam’s storage capacity
according to the natural environment. Hurst observed that flood occurrences could
be characterized as persistent, i.e. heavier floods were accompanied by above average
flood occurrences, while below average occurrences were followed by minor floods.
In the process of this finding he invented a new statistical method—the rescaled
range analysis (R/S analysis)—which he described in detail in an interesting book [8].

He tried to find out the ideal features for reservoir design. An ideal reservoir
should discharge certain amount of water every year and should never overflow.
However, the inflow of the reservoir varies due to changes in the climatic conditions.
If the inflow of the reservoir is too low then releasing fixed amount of water will
make reservoir dry. Thus, he was confounded with the problem of fixing the water
discharge policy, such that the reservoir will never be emptied nor it will overflow
[9]. In developing such a model, Hurst studied the inflow of water from rainfall. He
measured how reservoir level rises and falls around its average and recorded range
of the variations.
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The description of the rescaled range statistic given in the following borrows
heavily from Jens Feder’s book Fractals [10].

In any given year, t, the ideal reservoir will accept the influx ε(t) from the Lake
(Lake Albert taken as an example by Hurst), and a volume per year (discharge),
〈ε〉τ , will be released from the reservoir. The average influx over the time period of
τ years is:

〈ε〉τ = 1

τ

τ∑

t=1

ε (t) (1)

Let X(t) be the accumulated departure of the influx ε(t) from the mean 〈ε〉τ :

X (t, τ ) =
t∑

u=1

{ε (u) − 〈ε〉τ }, t = 1, 2, ... τ (2)

The difference between the maximum and the minimum accumulated influx X over
the time period τ is the range R(τ ). This range represents the storage capacity
required to maintain the mean discharge throughout the period. Thus, for an ideal
reservoir, R represents the difference between the maximum and minimum amounts
of water contained in the reservoir. The expression of R is:

R (τ ) = max
1≤t≤τ

X (t, τ ) − min
1≤t≤τ

X (t, τ ) (3)

This is illustrated in Fig. 1 where the range R for the lake Albert is calculated for the
first 30 years.

Clearly, we note that the range R depends on the time period τ considered and it
increases with increasing τ .

In order to compare observed ranges of various phenomena, Hurst used the
rescaled range R/S which is a dimensionless ratio, it is obtained by dividing the range
R(τ ) by the standard deviation S(τ ) defined by:

S =
√√√√ 1

τ

τ∑

t=1

{ε (t) − 〈ε〉τ }2 (4)

Fig. 1 Lake Albert
accumulated departures from
the mean discharge X(t)
for the first 30 years. The
range is indicated by R [6]
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For large τ the mean value of (R/S)τ ratio is a power function of τ :

(R/S)τ = (aτ)H (5)

where a is a constant and H is the Hurst exponent. H can be estimated as the slope
of the log/log plot of (R/S)τ vs. τ by using least-squares estimation:

log (R/S)τ = H log τ + constant (6)

3 Hurst Exponent and Fractal Dimension

According to the R/S analysis theory the slope of regression line is identified to
the Hurst exponent which is an index of the long memory of the time series.
The Hurst exponent taking values from 0 to 1 allows the measure of the time
series persistence. When H = 1/2 the process does not possess long memory (has
independent increments), a value 1/2 < H < 1 means that the process is persistent
(positive dependent), 0 < H < 1/2 means antipersistency (negative dependent) of
the process.

The Hurst exponent is directly related to the fractal dimension of a process, which
gives a measure of the roughness of the process by the relation:

D = 2 − H (7)

For a curve, fractal dimension is between 1 and 2, it approaches 2 if it is extremely
irregular and tends towards 1 if it is more regular.

To estimate the fractal dimension of curves, several methods exist. The most pop-
ular ones are the Box-Counting and the Minkowski–Bouligand methods. However,
experimental results published in the literature showed that these two techniques
suffer from inaccuracy and uncertainty. Indeed, according to [11] the precision of
these estimators are mainly related to the following aspects:

– Real Value of the Fractal Dimension D: With big values of D, the estimation
error is always very high. This can be explained by the effect of resolution. When
the value of D increases, its estimates can not reflect the roughness of the object
and higher resolution is then needed.

– Resolution: In the case of the temporal curves, the resolution consists of ob-
servation size of the curve (minute, hour, day. . . ). Estimated fractal dimension
decreases with the step of observation. This is due to the fact that a curve tends to
become a horizontal line segment and appears more regular. Inversely, estimated
fractal dimension tends to increase with the increase of the step of observation
because, a curve tends to series of vertical line segments and appears then more
irregular.

– Effect of Theoretical Approximations: Imprecision of the Box-counting and
the Minkowski–Bouligand methods is also related to constraints occurring in
theoretical approximations of these estimators. For example, the Box-counting
dimension causes Jumps on the log–log plots which generates dispersion of the
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points of the log–log plots with respect to the straight line obtained by linear
regression.

– Choice of the Interval through which the line of the log–log plots is adjusted.

Inspired by the Minkowski–Bouligand method, a class of approaches to compute
the fractal dimension of signal curves or one-dimensional profiles called covering
methods is then proposed by several researchers [12–14].

These methods consist in creating multiscale covers around the signal’s graph.
Indeed, each covering is formed by the union of specified structuring elements. In
the method of Box–counting, the structuring element used is the square or limp, that
of Minkowski–Bouligand uses the disk.

To improve the complexity and the precision of the fractal dimension estimation
of time series, we have developed a new method called Rectangular covering Method
[15–18].

The method consists in covering the curve for which we want to estimate fractal
dimension by rectangles instead of disks like in Minkowski–Bouligand approach.
The choice of this type of structuring element is due to the discrete character of
the studied signals. Thus, the rectangle allows combining every point on the x-axis
with the corresponding point on the y-axis, thus achieving the covering of the signal
without information loss.

From the mathematical point of view, the use of the rectangle as structuring
element for the covering is justified. Indeed, in [19] Bouligand showed that the
Minkowski–Bouligand dimension can be obtained by also replacing the disks in the
previous covers with any other arbitrarily shaped compact sets that posses a nonzero
minimum and maximum distance from their centre to their boundary.

Thus, as shown in Fig. 2, for different time intervals �τ the area A(�τ ) of this
covered curve is calculated by using the following relation:

A (�τ) =
n−1∑

tn=0

�τ · | f (tn + �τ) − f (tn)| (8)

N denotes the signal length (number of samples of the considered signal), f (tn) is the
value of the function representing the signal at the time tn and | f (tn + �τ) − f (tn)|
is the function variation related to the interval �τ . Bouligand defined the fractal
dimension D as follows [19]:

D = 2 − λ (A) (9)

where λ(A) is the similitude factor and it represents the infinitesimal order of A(�τ ).
It is defined by:

λ (A) = lim
�τ→0

log (A (�τ))

log (�τ)
(10)

Replacing λ(A) by its value in Eq. 10 we obtain:

D = lim
�τ→0

[
2 − log (A (�τ))

log (�τ)

]
(11)
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Fig. 2 An example of a curve
covered by rectangles at
different scales �τ

The properties of the logarithm permit us to put Eq. 11 under the following shape:

D = lim
�τ→0

⎡

⎣
log

(
A(�τ)

�τ 2

)

log
(

1
�τ

)

⎤

⎦ (12)

The fractal dimension is then deduced from the following relation by using the least-
squares estimation:

log

(
A (�τ)

�τ 2

)
∼= D · log

(
1

�τ

)
+ constant (13)

4 New Approach for Predicting Photovoltaic Storage

4.1 Methodology

The storage predicting method proposed in this paper is based on the R/S analysis
described above. In this method the PV storage (batteries) is assimilated to the water
reservoir studied by Hurst. Hence, the determination of the ideal PV storage capacity
size requires the estimation of the energy deficit which represents the difference
between solar radiation input and energy demand on long-term period.
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For a given day, d, the PV installation will accept a global irradiation I(d), the PV
generator will then convert this energy in Eg(d) according to equation below:

Eg (d) = η (d) I (d) Apv (14)

In this relation, Apv is the PV generator area, η(d) is the daily efficiency of the PV
generator.

Energy supplied by the installation to the load is assumed to be the mean
converted energy 〈Eg〉τ for the studied period τ . It is expressed as:

〈
Eg

〉
τ

= 1

τ

τ∑

t=1

Eg (t) (15)

The accumulated difference between the converted energy and the energy demand
for τ days is expressed as:

D (t, τ ) =
t∑

u=1

{
Eg (u) − 〈

Eg
〉
τ

}
(16)

The difference between the maximum and the minimum accumulated energy D(t, τ )

is the range R(τ ) which can be identified to the maximum size of PV energy storage.

R (τ ) = max
1≤t≤τ

D (t, τ ) − min
1≤t≤τ

D (t, τ ) (17)

According to the Hurst empirical law equation (Eq. 5) we can take the logarithm of
both the sides of the equation, we then obtain:

log (R/S)τ = H log τ + H log a (18)

Using the least-squares estimation to fit Eq. 18 we obtain the estimation values of H
and a. Knowing these parameters, one can predict the possible future value of the
adjusted range (R/S)n for any period n.

To estimate the range (R)n the adjusted range must be multiplied by the standard
deviation (S)n. This latter is taken to be equal to the greatest value of S over the
period.

4.2 Data Bank

The data used to implement this method are daily global irradiation I(d) computed
by integrating the global irradiance data measured at two south Algerian sites:
Tahifet located in Tamanrasset (latitude = 22◦53′ north, longitude = 6◦ east and
altitude = 1400 m) and Imehrou located in Illizi (latitude = 26◦00′ north, longitude =
8◦50′ east and altitude = 600 m).

The global irradiances are recorded from the operation of two 720 Wp stand-
alone photovoltaic power installations during 1992-year on a 10◦-tilted surface with
a time step of 10 min. These systems have been installed by the National Company
from Electricity and Gaz (SONELGAZ). Figure 3 gives histograms of the global
irradiations used for both studied sites.

To implement our approach daily converted energies are needed, these data can
be calculated according to Eq. 7. In our case the daily converted energy data are
provided by monitoring the PV systems with a data acquisition. Figure 4 shows
annual evolution of the monthly mean of daily converted energy Eg used.
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Fig. 3 Distribution of the daily global irradiation over the year

4.3 Implementation

The converted energy series (Eg (1), Eg (2),. . . , Eg(N)), (N = 366) is divided
into m consecutive non-overlapping subseries of length τ = N/m : Eg((k − 1)τ + 1),
Eg((k − 1)τ + 2), . . ., Eg((kτ)), k = 1, 2, . . ., m. The values of τ in our study range
from 10 to N/2.

For each subseries the mean:

〈
Eg

〉
k,τ

= 1

τ

τ∑

t=1

Eg ((k − 1) τ + t) (19)

and the standard deviation:

Sk,τ =
√√√√ 1

τ

τ∑

t=1

{
Eg ((k − 1) τ + t) − 〈

Eg
〉
k,τ

}2
(20)

are calculated. Then the stored energy resulted from accumulating the difference
between the converted energy and the mean which represents the load consumption
is determined:

(
Dk,τ

)
t =

t∑

u=1

{
Eg ((k − 1) τ + t) − 〈

Eg
〉
k,τ

}
, t = 1, 2, ... τ (21)

Fig. 4 Monthly mean of daily converted energy
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and the range, Rk,τ , for the subseries is calculated

Rk,τ = max
1≤t≤τ

(
Dk,τ

)
t − min

1≤t≤τ

(
Dk,τ

)
t (22)

We finally obtain the rescaled range (R/S)τ by averaging Rk,τ /Sk,τ over the m
subseries:

(R/S)τ = 1

m

m∑

k=1

(
Rk,τ /Sk,τ

)
(23)

Fig. 5 Accumulated storage Dk,τ of the studied sites for the first 183 days. The range is indicated
by R a D1,183 for Tahifet b D2,183 for Tahifet c D1,183 for Imehrou d D2,183 for Imehrou
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5 Results and Discussion

The assessment of our PV storage sizing is carried out using experimental data
described above. Thus, for values of τ ranging from 10 to N/2, where N is the
series size, the accumulated energy (Dk,τ ) which must be stored in the battery is first
computed according to Eq. 21. The resulting curves for the first 183 days are shown
in Fig. 5.

Fig. 5 (continued)
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Then, for each τ the range is estimated for the different subseries. The mean
values of R for some periods τ are given in Table 1.

One can clearly note that the range depends on the time period τ , in general R
increases with increasing τ .

In order to perform the prediction of the PV storage the (R/S)τ versus τ plot is
developed, this is shown in Fig. 6. It is apparent from the figure that most of (R/S)τ
points seems to lie along straight line.

A trend line is fitted amongst the log(R/S)τ versus log(τ) plot and the coefficient
of determination r2 is computed. This coefficient ranges from 0 to 1, expressed as
a percentage, it represents the proportion that can be predicted by the regression
line. The values of r2 found show that 98,5% for Tahifet and 92,2% for Imehrou of
the logarithm of the rescaled range is predictable by the regression line, the rescaled
range, is then a power function of τ .

In order to perfect the prediction the equation of the trend line is computed for
both the sites. The slope coefficients of the equations and the a parameters are given
in Table 2.

According to the R/S analysis theory the slope of regression line is identified to
the Hurst exponent which is an index of the long memory of the time series. For
self-affine time series H is also an index of their roughness which is the role of the
fractal dimension. For a curve, D approaches 2 if it is irregular and tends towards 1 if
it is regular. Since the Hurst exponent H is related to the fractal dimension D by the
relation: D = 2 − H, we deduced that high values of H means the curve is smooth
and the low values indicate the irregularity of the curve.

Observing the converted energy series used in our study, we found that the
corresponding curves are irregular (see Fig. 7), consequently, the corresponding
fractal dimension must be high and the Hurst exponent low.

To confirm this, the fractal dimension is calculated for these data using the
Rectangular covering method we developed and presented in Section 3. The values

Table 1 The range R for
different values of τ

τ R (kWh) R (kWh)
Tahifet Imehrou

10 1.42 1.54
20 2.84 3.14
30 4.17 4.80
40 5.37 5.94
50 7.09 8.57
60 9.03 8.26
70 9.75 11.33
80 12.34 10.50
90 11.52 14.56
100 14.62 13.33
110 16.07 15.76
120 17.05 17.40
130 18.17 10.78
140 20.47 13.28
150 26.12 16.86
160 28.11 20.30
170 31.03 31.45
180 34.11 37.02
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Fig. 6 Log R/S versus Log (τ ) Plots a Tahifet b Imehrou

of the fractal dimension obtained and the corresponding Hurst exponents deduced
by Eq. 7 are summarised in Table 3.

The H values found are very far from the slopes of the R/Splot regression lines
obtained (0,97 for Tahifet and 0,81 for Imehrou).

Table 2 Parameters of the
lines regression equations

Site Slope coefficient a

Tahifet 0,97 0,29
Imehrou 0,81 0,52
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Fig. 7 Yearly evolution of the daily converted energies Eg a Tahifet b Imehrou

This is can be explained by the non-stationarity of the studied series, since the
stationarity of the series is an essential prerequisite for the rescaled range analysis. It
is then obvious that the slopes of the fitted lines found are different from the Hurst
parameter.

Let’s recall that the purpose of this work is the PV storage prediction and not the
Hurst exponent estimation. Therefore, and to avoid any confusion the slopes of the
lines we found are noted E instead of H.

Hence, the rescaled range, R/S, for the solar energy converted series studied is
described by the following relations where τ is expressed in days:

(R/S)τ = (0.29 τ)0.97 for Tahifet
(R/S)τ = (0.52 τ)0.81 for Imehrou

(24)

Using the power relations given by Eq. 24 we can predict the storage of the two
PV systems studied for any desired period. Table 4 illustrates some predicted values

Table 3 Fractal dimensions
and Hurst exponents of the
daily converted energies
studied

Site Fractal Hurst
dimension (D) exponent (H)

Tahifet 1,80 0,20
Imehrou 1,81 0,19
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Table 4 Predicted values of
the R/S and the corresponding
R for a period ranging from
1 to 5 years

n Tahifet Imehrou

(years) R/S R (kWh) R/S R (kWh)

1 92,28 60,90 70,21 49,85
2 180,52 119,14 122,95 87,30
3 267,39 176,48 170,69 121,19
4 353,38 233,23 215,44 152,95
5 438,95 289,70 258,21 183,33

of the adjusted range (R/S) for different time periods n (1 to 5 years) and the
corresponding range Rwhich is identified to the maximum size of the PV storage.
Note that the medium life duration of PV batteries is 5 years.

Results given in Table 4 show that the proposed approach allowed the prediction
of the PV storage of the studied sites starting from a zero initial storage energy. The
R values predicted for 5 years are high, to evaluate the autonomy of the solar systems
cost, R values have been expressed in number of days of storage (NDS) according to
the relation below:

NDS = R〈
Eg

〉 (25)

Table 5 gathers the NDS values for the studied sites. Note that NDS is the number
of consecutive days where the battery covers consumption needs when there is a
deficit in the solar energy production. The NDS values obtained show that for an
energy demand equalling the mean of converted energy, a storage of several months
is needed to obtain the autonomy of the PV systems, consequently it will be too
expensive to set-up such PV installations. Therefore, it is necessary to minimize the
size of the storage.

6 Optimisation of the Photovoltaic Storage

Our approach to reduce the photovoltaic storage is based on the fact that the battery
supplies the load only when energy produced by PV panels is deficient. Thus, in the
accumulated storage function computed by Eq. 21 we consider only the negative
values, the storage size Ris then determined by Eq. 22 where the maximum and
minimum of (Dk,τ )t are calculated for the negative part of the function.

Figure 8 shows the accumulated storage behavior for the first 366 days where the
new range Ris indicated. The value of this range is found equal to 36 kWh.

Table 5 The photovoltaic
systems autonomy

n NDS (days)

(years) Tahifet Imehrou

1 21 34
2 41 60
3 61 83
4 80 105
5 100 125
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Fig. 8 Accumulated storage D(t,τ ) for the first 366 days a Tahifet b Imehrou

Table 6 Minimized values of
R/S and the corresponding R
for a period ranging from
1 to 5 years

n Tahifet Imehrou

(years) R/S R (kWh) R/S R (kWh)

1 54,54 36,00 13,31 9,45
2 106,83 70,51 23,33 16,57
3 153,31 104,49 32,41 23,01
4 209,27 138,12 40,91 29,05
5 259,84 171,50 49,02 34,80
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Table 7 Photovoltaic systems
autonomy after the storage
size optimization

n NDS (days)

(years) Tahifet Imehrou

1 13 5
2 25 12
3 36 16
4 48 20
5 59 24

Knowing the value of the new range R for one year (366 days) and using the law
power:

(R/S)τ = (aτ)E (26)

one can predict the new range for the future period according to the equation below:

(R/S)τ2 = (R/S)τ1

(
τ2

τ1

)E

(27)

In this relation τ1 is the period for which the range R has been determined, τ2 is any
future period for which we want to predict the storage. E is the slope of the log/log
plot of (R/S)τ vs. τ already found for the studied sites.

Table 6 gives the new adjusted ranges and the corresponding ranges for time
periods n ranging from 1 to 5 years. To evaluate the efficiency of the optimized

Fig. 9 Comparison of the PV
systems autonomy before and
after the storage size
optimization a Tahifet
b Imehrou
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method proposed, the NDS values have been calculated, results obtained are shown
in Table 7.

Figure 9 gathers the NDS values obtained before and after minimizing the PV
storage size with the proposed optimization approach. We remark that the PV
storage sizes are been reduced when we apply the optimization method for both
the studied sites. The autonomy of the PV Tahifet installation has been reduced by
approximately a factor of 1.6, that of the PV system installed in Imehrou by roughly
a factor of 5.

7 Conclusion

In this paper, a method for predicting a photovoltaic storage at long-term is pre-
sented. It was shown that the rescaled range analysis applied to the solar converted
energy data of two Algerian PV installations provides an alternative way to size
and predict the PV storage. Results presented here confirm that although the data
studied are non-stationary the rescaled range is well described by a power function
of the time. A new exponent E different from the Hurst exponent has then been
introduced. Results of this work also confirm that the PV storage can be predicted
using the power laws established.

A first estimation and prediction of the PV energy storage sufficient to ensure a
daily consumption without failure and without loss, leads to values that correspond
to several months of storage, which is not economically viable.

To overcome this drawback we proposed an approach to minimize the stock of
energy. This approach is based on the fact that the role of the PV storage is to satisfy
the energy demand when the photovoltaic energy production is deficient. This differs
from the R/S analysis that takes into account in the size of the storage the excess
energy produced by solar panels. To eliminate the energy losses we suggest a good
sizing of PV panels.

Results of the optimization method show that the proposed approach has led to
significant reduction of the PV storage size.

It is important to note that in this work we considered the energy demand
to be constant and equal to the mean converted energy. However, the weather
conditions and electricity demand are not deterministic in nature but have random
behaviour. Therefore, the sizing of battery storage capacity should be based on a
stochastic approach which takes into account a real building load profiles. So, the
accuracy of the proposed approach can be improved by replacing the constant energy
demand by load profiles representing possible realizations of electricity load that
could have occurred, these profiles can be generated by an adequate model (see for
example [20]).

Preliminary results presented in this paper need further experimentation to
validate them by taking a larger data bank and more sites.
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